Каталог: Электродвигатели

Инструкция по работе

Общие сведения

Каталог: Электродвигатели (далее - Библиотека) предназначен для подбора и отрисовки электродвигателей различных типов:

- асинхронных трехфазных общего применения,
- асинхронных трехфазных взрывозащищенных,
- крановых и металлургических,
- асинхронных однофазных общего применения,
- двигателей постоянного тока с независимым возбуждением,
- шаговых,
- коллекторных двигателей, применяющихся в бытовой технике различного назначения.

Библиотека содержит следующие основные сведения о трехфазных и однофазных асинхронных электродвигателях:

- мощность,
- число оборотов вала, в том числе с учетом скольжения,
- момент инерции вала,
- масса,
- основные монтажные исполнения,
- климатические исполнения,
- описание с указанием области применения двигателя,
- сведения о разработчиках и производителях.

Кроме того, для электродвигателей постоянного тока указаны все возможные сочетания питающих токов и напряжений, для шаговых двигателей и коллекторных приведены некоторые дополнительные параметры.

При создании библиотеки использовались каталоги "Информэлектро" 2000, 2001 гг., а также каталоги заводов-изготовителей.

Все параметры двигателей переменного тока (как для внутренних, так и для экспортных поставок) указываются, как правило, применительно к частоте 50 Гц и уровням напряжения по отечественным стандартам (127, 220, 380, 660, 6000, 10000 В). Однако следует иметь в виду, что при наличии заказов практически все предприятия предусматривают возможность изготовления двигателей на частоту 60 Гц и уровни напряжения по зарубежным стандартам.

При необходимости изготовления двигателей в тропическом или общеклиматическом исполнении номинальная мощность снижается на 20% по сравнению с мощностью аналогичных машин для умеренного климата.

При переходе с частоты 50 Гц на 60 Гц номинальная частота вращения увеличивается пропорционально, т.е. на 20%.

Для многоскоростных асинхронных двигателей, частота вращения которых изменяется за счет изменения числа пар полюсов благодаря переключению обмоток, значения частоты вращения и мощности указываются раздельно для каждого режима.

Установка, подключение и запуск библиотеки

Библиотека устанавливается из дистрибутива КОМПАС-3D и представляет собой стандартное приложение системы КОМПАС-3D (прикладную библиотеку). Чтобы ее подключить, необходимо воспользоваться *Менеджером библиотек* КОМПАС-3D (см. Руководство пользователя).

Интерфейс Библиотеки

Список типов двигателей и основных параметров, соответствующих им, представлен в таблице. При нажатии на кнопку-заголовок любого столбца выполняется сортировка списка по значениям данного столбца. При повторном нажатии выполняется обратная сортировка.

Фильтр

Эта группа опций служит для облегчения поиска нужного двигателя. Фильтрация производится по любому сочетанию параметров:

Тип

Эта опция позволяет осуществить поиск по любым символам из обозначения типа двигателя.

Мощность

Эта опция позволяет осуществить поиск по заданному диапазону мощностей, либо по значению мощности, введенному только в первое поле.

Число оборотов

Эта опция позволяет осуществить поиск по числу оборотов вала, выбранному из списка.

Высота оси вращения

Эта опция позволяет осуществить поиск по высоте оси вращения (габариту), выбранному из списка.

Выбрать

После выбора параметров фильтрации следует нажать кнопку **Выбрать** для активизации фильтра. При снятии выбора с каких-либо параметров фильтрации, происходит автоматическая отмена фильтра по этим параметрам.

Исполнение по монтажу

Из этого списка Вы можете выбрать исполнения по монтажу.

Климатическое исполнение

Если для выбранного электродвигателя имеются сведения по климатическим исполнениям, их обозначения можно выбрать в списке **Климатическое исполнение**. Обозначение указанного исполнения будет занесено в наименование двигателя при формировании объекта спецификации.

Сведения

Нажатие на кнопку Сведения выводит на экран окно с кратким описанием двигателя, информацией о его разработчике и изготовителях.

Двигатель может быть отрисован в различных проекциях: Главный вид, Вид справа, Вид слева, Вид сзади, Вид сверху.

Отверстия в лапах

Включите эту опцию, если необходимо, чтобы на чертеже были изображены отверстия в лапах двигателя.

Создать объект спецификации

Если Вы работаете со спецификацией КОМПАС-ГРАФИК, то включенная опция означает, что при вставке элемента из библиотеки произойдет автоматическое формирование соответствующего объекта спецификации.

После настройки параметров выбранного электродвигателя нажмите кнопку **ОК** для вставки в чертеж его изображения. Чтобы отказаться от вставки, нажмите кнопку **Отмена**.

Исполнения по монтажу и конструктивные исполнения

В библиотеке представлены электродвигатели, имеющие следующие варианты монтажных исполнений:

- 1. На лапах
- 2. Фланцевое со сквозными отверстиями и на лапах
- 3. Фланцевое с резьбовыми отверстиями и на лапах
- 4. Фланцевое со сквозными отверстиями

5. Фланцевое с резьбовыми отверстиями

В соответствии со стандартами Международной электротехнической комиссии (МЭК) и соответствующими отечественными стандартами конструктивные исполнения внешней части электрических машин делятся на следующие три основные группы.

I. Исполнения по степени защиты оболочки в соответствии с ГОСТ 17494-72 обозначаются латинскими буквами IP (International Protection) и двумя цифрами.

Примечание. Защита считается достаточной, если сохраняется нормальная работоспособность изделия.

Естественно, что сочетания первой и второй цифр реально имеются в ограниченном количестве. Наиболее употребительные исполнения и их общепринятые (хотя и не установленные стандартами) наименования следующие:

- ІР00, ІР10 открытое исполнение;
- ІР11, ІР21 каплезащищенное исполнение;
- IP22, IP23 защищенное исполнение;
- ІР44, ІР54 закрытое исполнение;
- IP55, IP56 водозащищенное исполнение.

Для более точной расшифровки обозначений по степени защиты следует пользоваться указанным ГОСТом.

- **II. Конструктивные исполнения по способу монтажа** в соответствии с ГОСТ 2479-79 обозначаются латинскими буквами IM (International Mounting) и группой цифр. В тех случаях, когда исполнение соответствует указанному ГОСТу, но не отвечает требованиям МЭК, указывается одна буква М. Группа цифр состоит в общем случае из четырех цифр:
 - первая цифра характеризует общую конструкцию машины в соответствии с
 - сочетание второй и третьей цифр подробно отражает пространственное положение корпуса и вала машины и конструктивные особенности крепления корпуса (в связи с большим количеством вариантов и сложностью детализации для расшифровки этой части обозначения следует при необходимости пользоваться указанным ГОСТом).
 - четвертая цифра отражает количество концов вала и их исполнение.

Практически часто используется сокращенное групповое обозначение, состоящее из тех же букв и одной первой цифры. Такое обозначение в таблицах указывается в тех случаях, когда предусматривается много вариантов исполнений в пределах одной группы.

Примечание. Изменением №1 от 1990 г. к ГОСТ 2479-79 предусмотрены дополнительные условные обозначения исполнений по способу монтажа (буква

"В" и одна или две цифры), которые до настоящего времени не нашли практического применения и в таблицах настоящего каталога не используются.

III. Конструктивные исполнения по способу охлаждения в соответствии с ГОСТ 20459-87 обозначаются латинскими буквами IC (International Cooling) и дополнительной группой знаков.

Для обычного одноконтурного охлаждения такая группа знаков содержит в общем случае латинскую букву (или несколько букв) и две цифры. Буквой обозначается вид охлаждающего агента: А - воздух, W - вода, H - водород, U - масло, Fr - фреон и т.п. Если в системе охлаждения используется только воздух, то букву А указывать необязательно.

- Первая цифра характеризует устройство цепи охлаждения, а именно устройство подвода и отвода охлаждающего агента.
- Вторая цифра отражает способ перемещения охлаждающего агента.

Для систем двухконтурного охлаждения используются две группы дополнительных знаков, каждая из которых строится аналогично рассмотренному выше (см. табл. 6 и 7), при этом первая группа относится к внешнему контуру (с низшей температурой), вторая - к внутреннему контуру (с высшей температурой).

Климатические исполнения

Климатические исполнения двигателей соответствуют ГОСТ 15150.

Режимы работы

Режимы работы приводов различных механизмов условно делятся на следующие виды:

- **S1** продолжительный (или длительный) режим, при котором продолжительность работы достаточна для достижения установившейся температуры нагрева;
- **S2** кратковременный режим, при котором за время работы не достигается установившаяся температура нагрева, а после рабочего периода следует достаточно длительная пауза; если такой режим двигателя является основным (номинальным), то обязательно указывается определенная длительность работы (чаще всего 10, 30, 60, 90 мин.), соответствующая номинальной мощности;
- **S3** повторно-кратковременный, отличается повторяющимися пусками и остановками двигателя и характеризуется относительной продолжительностью включения (ПВ) в % от общей длительности типичного цикла, причем стандартная длительность цикла принята 10 мин. (что, впрочем, не является строго регламентированной величиной);
- **S4** повторно-кратковременный режим с весьма частыми пусками и остановками, который также характеризуется ПВ в % и дополнительно числом включений в час.

Стандартом предусматривается также ряд других режимов (\$5 - аналогичный \$4, но с использованием электрического торможения; \$6 - перемежающийся - с переменной нагрузкой при постоянной частоте вращения; \$7 - режим чередующихся реверсов; \$8 - режим с переменными нагрузками и частотой вращения), которые однако не являются строго нормированными для двигателей и поэтому подробно не рассматриваются.

Номинальная мощность указывается чаще всего для продолжительного режима, и этот случай особо не оговаривается. Однако если двигатель предусматривается в основном для кратковременного режима, то обязательно должен указываться вид режима **S2** и его длительность. Аналогично для режима **S3** вместе с мощностью обязательно указываться соответствующая продолжительность включения в %. Если же мощность указана продолжительного режима, но двигатель допускает и другие режимы, то в таблицах указывается "S1, S2, S3 и другие режимы", а допустимая мощность в других режимах может быть достаточно просто пересчитана известными методами эквивалентных нагрузок.

Мастер наполнения базы данных электродвигателей

(далее – *Macmep*) предназначен для самостоятельного наполнения базы данных, входящей в состав "Каталог: Электродвигатели" (далее - Библиотека) для КОМПАС-3D.

Мастер входит в состав дистрибутива Библиотеки и устанавливается вместе с ней. Также его можно установить отдельно, переписав файл ELMOTORS.RTW (версии не ранее 11.04.2006) и ADDMOTOR.DLL из дистрибутива КОМПАС-3D в папку «Elmotors».

ВНИМАНИЕ!

Перед началом работы с Мастером необходимо отрисовать во фрагментах КОМПАС-3D и сохранить во временной папке на диске нужные виды электродвигателя — «Главный вид», «Вид слева», «Вид справа», «Вид сзади», «Вид сверху». Имена фрагментов могут быть любыми. Наличие всех видов желательно, но не обязательно. Если наличие какого-то вида необязательно, его необходимо заменить специальным фрагментом с надписью «Вид отсутствует». Данный фрагмент с именем *TEMP.FRW* в формате КОМПАС-3D v8 находится в папке Библиотеки электродвигателей

Выбор вида двигателя

На этом шаге определяется вид двигателя.

Может быть выбран следующий раздел:

- Асинхронные трехфазные общего применения;
- Асинхронные трехфазные взрывозащищенные;

- Асинхронные однофазные общего применения;
- Двигатели крановые и металлургические;
- Постоянного тока.

Выбор прототипа

Выберите прототип двигателя, наиболее близкий по параметрам к вновь вводимому в базу (если такого нет, можно выбрать любой двигатель), нажмите кнопку «Далее»

Параметры двигателя

На этом шаге необходимо отредактировать данные, формируя информацию, соответствующую вновь вводимому в базу электродвигателю (поля «Тип», «Документ», «Исполнение», и.п.). Поле «Исполнение» заполняется из выпадающего списка. Наименование данного исполнения необходимо ввести в поле справа от строки «Исполнение». В строке параметров необходимо ввести данные по мощности, числу оборотов и т.п.

Если база данных должна содержать изображения двигателя в разных проекциях, необходимо подключить соответствующие фрагменты. Если вид отсутствует, в соответствующем поле подключается фрагмент *TEMP.FRW*.

После ввода всех необходимых данных и параметров, подключения фрагментов с видами двигателей, необходимо нажать кнопку «СОЗДАТЬ». Новый двигатель будет внесен в базу данных. Доступ к нему осуществляется по стандартному механизму работы библиотеки.

Если какой-либо двигатель введен некорректно, данные по нему можно отредактировать с использованием этого же «Мастера».

Если двигатель должен быть удален из базы данных, необходимо выбрать его с использованием «Мастера» и в окне нажать кнопку «УДАЛИТЬ».

Мастер подбора электродвигателя предназначен для:

- расчета требуемой мощности и числа оборотов вала электродвигателя в зависимости от параметров выходного звена привода,
- выбора электродвигателя, удовлетворяющего полученным значениям мощности и числа оборотов вала,
- проверки параметров выходного звена привода для выбранного электродвигателя.

Выбранный электродвигатель может быть отрисован, исходные данные и результаты расчета могут быть записаны в файле-отчете.

Все параметры сохраняются в конфигурационном файле и восстанавливаются при следующем вызове Мастера.

Силовые параметры

На этом шаге вводятся исходные данные расчета, характеризующие силовые параметры выходного звена привода:

Момент, Частота вращения выходного вала привода;

Сила, Скорость выходного звена привода.

В зависимости от выбранных параметров выполняется расчет мощности выходного звена привода:

Мощность рабочей машины (РМ):

Ppм = T*w,

либо

Pрм = F*v,

где: F – тяговая сила (PM), v – линейная скорость тягового органа PM, T – вращающий момент тягового органа PM,

 $w = 2*\pi*n/60$ - угловая скорость тягового органа PM,

n- заданная частота вращения тягового органа PM в минуту.

Вид привода

Этот раздел активизируется, если на предыдущем шаге Силовые параметры была выбрана опция Сила, Скорость и введено значение тяговой силы и линейной скорости тягового органа рабочей машины. Необходимо выбрать вид привода: Приводной барабан или Цепная передача, и ввести значения соответствующих параметров.

В зависимости от выбранных параметров выполняется расчет числа оборотов (частоты вращения) выходного звена привода:

Частота вращения тягового органа рабочей машины:

 $Npm = 60*1000*/(D*\pi)$

для ленточных, грузоподъемных и т.п. машин,

Npm = 60*1000*/(z*p)

для цепных конвейеров, где

D - диаметр барабана;

z,р- число зубьев ведущей звездочки тягового органа и шаг тяговой цепи.

Кинематика привода

На этом шаге отображается число оборотов тягового органа рабочей машины (Частота вращения выходного вала), а также вводятся следующие данные:

- Передаточное отношение привода
- Допустимое отклонение скорости выходного вала.

<u>Примечание:</u> Предполагается, что передача является **понижающей,** т.е. при расчете требуемого числа оборотов вала электродвигателя частота вращения выходного вала привода будет увеличена в соответствующее число раз. При использовании повышающей передачи необходимо вводить значение передаточного отношения **меньше 1**.

Расчет КПД привода

На данном шаге выполняется расчет КПД передачи.

В верхней таблице представленые типовые значения КПД различных видов передач. Для ввода конкретного значения КПД необходимо выбрать соответствующую ячеку таблицы и нажать кнопку «↓»

Значение КПД будет добавлено в нижнюю таблицу.

При повторении описанных действий, в нижнюю таблицу добавляются все выбранные значения КПД, а в поле КПД привода отображается результирующее значение КПД:

 $K\Pi Д = K\Pi Д1*K\Pi Д2*...*K\Pi Дn.$

Для удаления ошибочно введенных значений КПД передач из нижней таблицы нажать кнопку «↑»

При этом результирующее значение КПД будет пересчитано автоматически.

Для очистки нижней таблицы нажать «↑↑»

Если имеются точные данные о значениях КПД передач, представленных в верхней таблице, их можно откорректировать непосредственно в соответствующих ячейках верхней таблицы.

Если используются передачи, не указанные в таблице, пользователь может ввести значения КПД этих передач в ячейках строки «Пользовательская...». При добавлении значений в эту строку автоматически создается следующая пустая запись для значений КПД передач пользователя.

Для удаления ошибочно введенных пользовательских строк нажать «→»

Если пользователю известно полное значение КПД всего привода, он может ввести его непосредственно в поле редактирования **КПД привода**.

Результаты расчета

На этом шаге представлены результаты расчета:

Мощность электродвигателя

Рдв >= Ррм / КПД

Частота вращения двигателя

 $NдB = Npm*U \pm (Npm*d)/100,$

где: U - передаточное отношение привода, d - допустимое отклонение скорости выходного вала.

Выбор вида двигателя

На этом шаге определяется вид двигателя для последующего выбора конкретного типа двигателя, удовлетворяющего требуемым значениям мощности и частоты вращения.

Может быть выбран следующий раздел:

- Асинхронные трехфазные общего применения;
- Асинхронные трехфазные взрывозащищенные;
- Асинхронные однофазные общего применения;
- Двигатели крановые и металлургические;
- Постоянного тока.

Проверка параметров привода

На этом шаге отображаются электродвигатели выбранного ранее вида, удовлетворяющие результатам расчета.

Одновременно выполняется обратный расчет. Для выбранного в таблице электродвигателя и введенных ранее параметров, в нижней части диалога выводятся значения:

Мощности выходного звена привода;

Момента на выходном валу привода;

Частоты вращения выходного вала.

В том случае, если не найдены электродвигатели заданного вида, удовлетворяющие полученным результатам, в таблице выводится сообщение: «Не найдены двигатели с заданными параметрами».

Завершение

На завершающем шаге расположены опции:

Создать текстовый файл;

Отрисовка выбранного двигателя.

Если выбрана опция **Создать текстовый файл,** при нажатии **Готово** пользователю предоставляется стандартный диалог выбора имени файла и создается текстовый файл-отчет с исходными данными и результатами расчета.

Если выбрана опция **Отрисовка выбранного двигателя**, при нажатии **Готово** вызывается на выполнение библиотека **Каталог**: **Электродвигатели**. При этом автоматически выбирается двигатель, найденный на предыдущем шаге.

Если на предыдущем шаге не найдены электродвигатели заданного вида, удовлетворяющие полученным результатам, опция **Отрисовка выбранного двигателя** недоступна.